A Novel Test Methodology to Assess the Performance of Ballistic Helmets

Presented by:

B. Anctil

Co-authors:

M. Keown

Biokinetics and Associates Ltd.

D. Bourget and G. Pageau Defence R&D Canada

22nd International Symposium on Ballistics Vancouver, Canada, November 14-18, 2005

The Problem

- New lightweight composite helmets have increased protection against penetration
- Result in large backface deformation
- Increased risk of serious skull/brain injuries
- No widely accepted evaluation procedure

Our Strategy

- Implement an impact force measurement headform
- Based on injury model developed by Bass et al. (2003) using localized skull pressure data
- Develop test procedure
- Conduct experimental trials with current combat helmet models
 - Define injury function

Measurement System Requirements

- Dynamic Loads
 - Force < 5,000 N
 - Duration < 2 ms
- PVDF gauge
- Load cell
- Evaluation under ballistic loading conditions

Instrumentation Selection

Force applied vs. measured

Impact Force Measurement Headform

Pressure sensitive film to measure loading area

Helmet Performance Evaluation

- 3 Combat Helmet Models
- Similar Ballistic Limit (V₅₀)
- 9mm FMJ

350 m/s < v < 450 m/s

Helmet A

Helmet B

Helmet C

Headform Response

- Peak Force of Individual Load Cells
- Peak Force of Sum of Load Cells
- Impulse

Individual Peak Forces

Individual Peak Forces

Individual Peak Forces

Impact Force Measurements

Impulse

Skull Fracture Injury Function

Helmet B / PMHS (Bass et al. 2003)

Transfer Function

Force vs. velocity

valid only for concentrated load

Load Distribution

$$P_e = \frac{\sum_{i=1}^{5} F_i(t)}{A_e}$$

Average Peak Pressure

Conclusions

- Miniature load cell suitable to measure helmet backface loading
- Instrumented headform was able to quantify the performance of ballistic helmets
- Can be used to predict the risk of skull fracture

Limitations

- Injury function valid only for concentrated load
- Contact area > sensing area
- Peak force must be within sensing area
- Does not address distributed forces (rigid helmets)

Way ahead

- Additional impact locations (e.g. front, rear)
- Consider other measurements (head acceleration)
- Review data analysis procedure (peak, sum, impulse)
- Calibration procedure
- Laboratory re-enactments of injurious cases

Acknowledgment

- This work was supported by
 - Defence R&D Valcartier
 - Directorate of Land Requirements of DND Canada
 - International Counter Terrorism Research and Development Program Agreement between US and Canada
 - OLES and NIJ
- Co-authors
 - M. Keown (Biokinetics and Associates Ltd.)
 - D. Bourget and G. Pageau (Defence R&D Canada)

Contact Information

Name: Benoit Anctil

Phone No.: (613) 736-0384 ext.223

Company: Biokinetics and Associates Ltd.

E-mail: anctil@biokinetics.com

